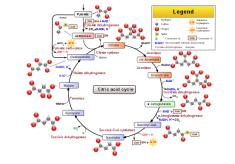


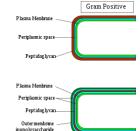
Demystifying Series: Microbial ID Using NGS Data

Joel R. Sevinsky, Ph.D. WY PHL AMD Training Lead MA DPH AMD Bioinformatics Resource January 22, 2020

Outline for today's webinar


- Traditional microbial species identification
- Transition to genotyping methods
- Using NGS data to genotype pathogens
 - Average nucleotide identity (ANI)
 - MinHash dimensionality-reduction (Mash)

This webinar will be recorded and placed at http://www.staphb.org.



Phenotypic Characteristics of Taxonomic Value

- Morphology
- Motility
- Metabolism
- Physiology and Biochemical Data
- Cell Chemistry
- Others

Gram Negative

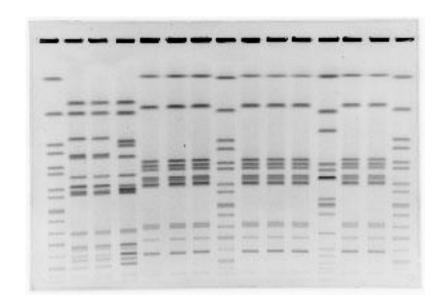
Techniques of bacterial taxonomy

Yuhua X

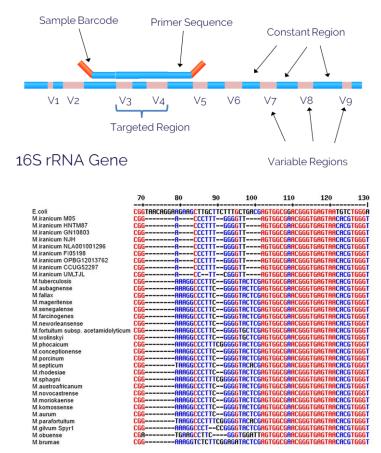
China General Microbiological Culture Collection Center (CGMCC) Institute of Microbiology Chinese Academy of Sciences

Phenotypic Approach – Disadvantages

- Need experienced staff
 - Lots of validations, competencies, etc
- Can be a complicated process
 - Multiple tests and results necessary for interpretation
- Labor consuming
 - Hands on process for most tests
- Time consuming
 - Some testing needs to be sequential, often growth required

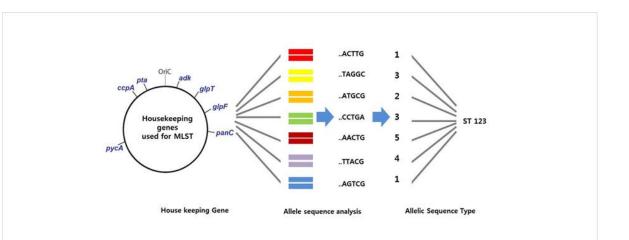

Genotypic Approach

Same genotypes, different phenotypes



- PFGE global examination of a subset of gDNA from a high level.
- 16S rDNA specific examination of a small, highly discriminatory region of gDNA.
- MLST specific examination of several small discriminatory regions of gDNA.
- NGS global yet specific examination of almost all gDNA.

- PFGE global examination of a subset of gDNA from a high level.
- 16S rDNA specific examination of a small, highly discriminatory region of gDNA.
- MLST specific examination of several small discriminatory regions of gDNA.
- NGS global yet specific examination of almost all gDNA.



Tan et. al. (2014). Scientific reports. 4. 7169. 10.1038/srep07169

- PFGE global examination of a subset of gDNA from a high level.
- 16S rDNA specific examination of a small, highly discriminatory region of gDNA.
- MLST specific examination of several small discriminatory regions of gDNA.



https://www.macrogen.com/en/business/ces_service4.php

- PFGE global examination of a subset of gDNA from a high level.
- 16S rDNA specific examination of a small, highly discriminatory region of gDNA.
- MLST specific examination of several small discriminatory regions of gDNA.
- NGS global yet specific examination of almost all gDNA.

Big Picture

- NGS genotyping methods attempt to match experimentally acquired DNA sequences with reference DNA sequences for microbial identification.
 - No reference sequence, no identification.
- Methods vary by:
 - How are the query and reference sequence represented?
 - Are the sequences converted to a new data structure or kept as a string?
 - How are the strings broken up?
 - Are the reads used natively or are they assembled first?
 - What is the algorithm for comparison?
 - Is blast used?
 - Is an algorithm optimized for the new data structure used?
 - Does the algorithm use any approximations?

Genotyping - Average Nucleotide Identity (ANI)

The next few slides borrow heavily from the presentations:

National Center for Emerging and Zoonotic Infectious Diseases

Whole Genome Sequence (WGS) of Enteric Bacteria using the BioNumerics RefID Database

Steven Stroika PulseNet WGS Technical Lead

BioNumerics 7.6 Workshop for Analyzing WGS Data

May 2019

The Use of Average Nucleotide Identity (ANI) for Bacterial Identification

Patti Fields for Maryann Turnsek Enteric Diseases Laboratory Branch (EDLB) CDC

2017 APHL Annual Meeting Providence, Rhode Island June 14, 2017

Division of Foodborne, Waterborne, and Enviromental Diseases

What is Average Nucleotide Identity (ANI)


- A computation method to compare two genomes
 - Compares and unknown query sequence to a well-characterized reference genome.
 - Two calculations:
 - Compares the genetic similarity of shared sequences.
 - Determines the proportion of bases aligned.
- Closely mirrors comparisons by DNA-DNA hybridization
 - The traditional gold standard method for determining species boundaries.

Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci U S A. 2005 Feb 15;102(7):2567-72. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A. 2009 Nov 10;106(45):19126-31.

How ANI Works

- Aligns shared sequences and calculates percent identical nucleotides
- Answers the question: Are these two genomes the same taxon? Yes or No
- In this example, 53/55 aligned bases = 96.4% identity
- The ANI "cutoff" value for % identity and % bases aligned is determined empirically for each taxon
 - Published values are on the order of 95% identity.

DNA-DNA hybridization values and their relationship to whole-genome sequence similarities

Johan Goris,¹† Konstantinos T. Konstantinidis,¹‡ Joel A. Klappenbach,¹ Tom Coenye,² Peter Vandamme² and James M. Tiedje¹

¹Center for Microbial Ecology, Michigan State University, East Lansing, MI 48824, USA ²Laboratory for Microbiology, Gent University, K. L. Ledeganckstraat 35, B-9000 Gent, Belgium

ANI vs DNA-DNA Hybridization

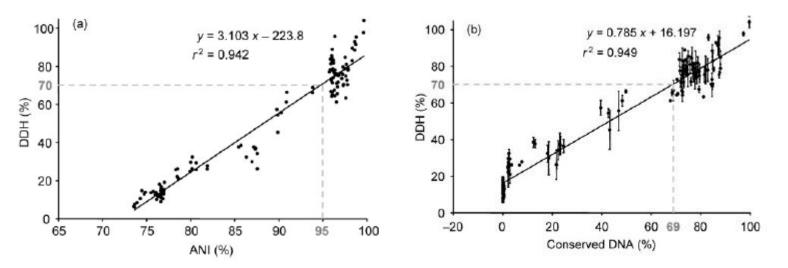
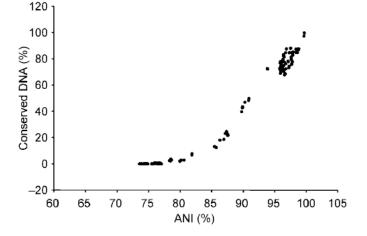



Fig. 1. Relationship between DDH values and genomic sequence identity and conservation. Each filled circle represents the value for DDH between two strains (y-axis), plotted against the ANI of the conserved genes between the strains (a) and the percentage of conserved DNA between the strains (b). The standard deviations for the DDH values, omitted from (a) for simplicity, are shown in (b). A linear trend line is shown, but other regression models were evaluated as well (see text). The horizontal broken lines denote the 70 % DDH recommendation for species delineation, while the vertical broken lines denote the corresponding ANI (a) and percentage of conserved DNA (b) values for linear regression.

Fig. 2. Relationship between genomic sequence identity and conservation. Each filled circle represents the percentage of conserved DNA shared between two strains (determined at 90% nucleotide identity), plotted against the ANIs of their common genes.

Shifting the genomic gold standard for the prokaryotic species definition

Michael Richter and Ramon Rosselló-Móra¹

Marine Microbiology Group, Institut Mediterrani d'Estudis Avançats (CSIC-UIB), E-07190 Esporles, Spair

Edited by James M. Tiedje, Center for Microbial Ecology, East Lansing, MI, and approved September 16, 2009 (received for review June 11, 2009

ANI Algorithms

- ANI Blast used originally (ANIb)
- ANI MUMer used in BN (ANIm)

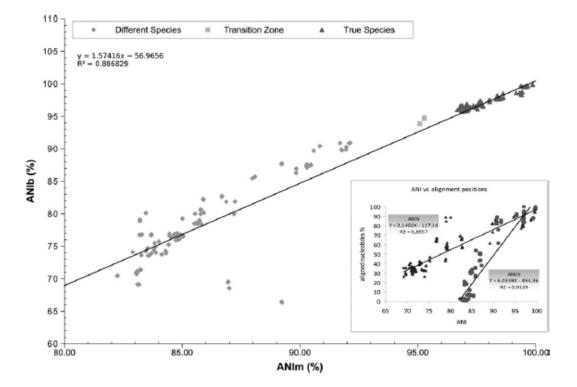
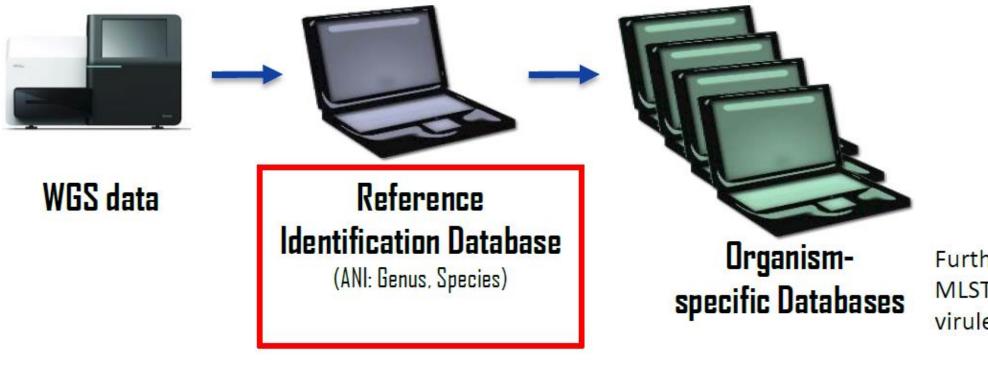
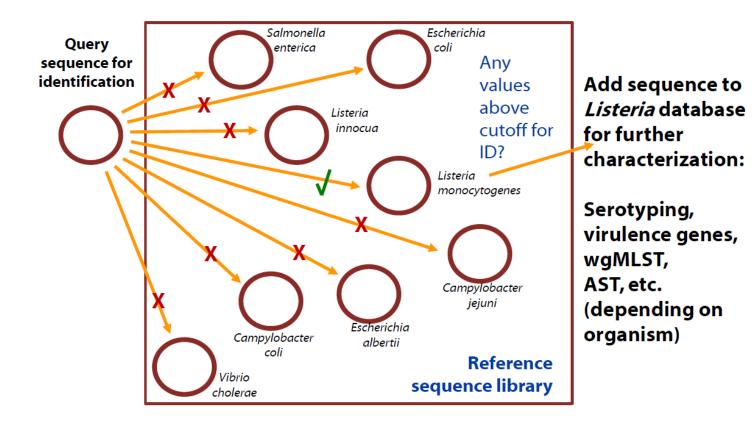



Fig. 1. Plotted results of ANIb versus ANIm. The triangles show those values that correspond to what taxonomists consider as "true" species according to the DDH values traditionally applied and that have previously been classified. *Inset* shows the regression lines of the pairwise comparisons of ANIb or ANIm values with their corresponding percentage of aligned stretches (percentage of nucleotides included in the study).

ANI in Public Health Bioinformatics



Further characterization: MLST, serotype, lineage, AST, virulence, plasmids, etc...

How searching works

"...determined empirically for each taxon."

1. Tableau visualization of ANI values between and within species.

seNet WGS Technical Lea

Empirical Values Used in BN

Genera	Species	ANI value (%)	Genome size (MB)	Genera	Species	ANI value (%)	Genome size (MB)
Campylobacter	coli fetus			Salmonella	bongori enterica	≥93	4.5-5.0
	jejuni lari upsaliensis hyointestinalis*	≥92	1.4-2.2	Vibrio	cholerae Parahaemolyticus vulnificus alginolyticus*	≥95	4.0-5.0
Escherichia	albertii* coli and Shigella fergusonii*	≥95	4.5-5.5		cidicii* cincinnatiensis* fluvialis*		
Listeria	innocua* ivanovii* marthii* monocytogenes seeligeri* welshimeri*	≥92	2.7-3.2		furnissii* garveyi* metoecus* metschnikovii* mimicus* navarrensis*		

AMD TRAINING LEAD and BIOINFORMATICS REGIONAL RESOURCE

Pros and Cons for ANI

Pros

- Replicates species determinations by DNA-DNA hybridization
- Very rapid: Compare two genomes in seconds
- Very robust: Reliable answer with 5X sequence coverage (based on down-sampling experiment)
- Relatively easy to interpret with clear cut off values

Cons

- Definitive identification requires representative genome is in the Reference Sequence Library
 - New or unrepresented species cannot be identified
- Useful for comparing closely related bacteria only
 - Distantly related => No Match
- As reference library gets bigger, computation time gets longer

Genotyping – Mash (MinHash)

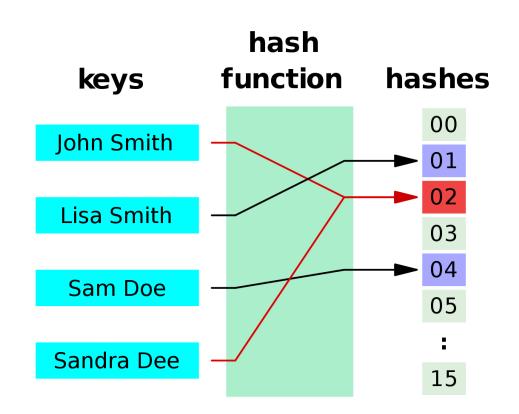
- Current ANI database for Bionumerics contains ~40 reference genomes.
- Current NCBI Pathogen Detection Browser (January 2020) contains ~500,000 isolates.

If you want to start dramatically increasing your reference database size, use reads rather than assemblies, and keep your search times short, you will need to reduce the dimensionality of your data and make some assumptions.

K-mers

5' -AGGGCGGTTTAATAATCTACGGCTTATTGTTGAACGA-3'

AGGGCGGTTTAATAATCTACG GGGCGGTTTAATAATCTACGG GGCGGTTTAATAATCTACGGC GCGGTTTAATAATCTACGGCT CGGTTTAATAATCTACGGCTT GGTTTAATAATCTACGGCTTA GTTTAATAATCTACGGCTTAT TTTAATAATCTACGGCTTATT TTAATAATCTACGGCTTATTG TAATAATCTACGGCTTATTGT AATAATCTACGGCTTATTGTT ATAATCTACGGCTTATTGTTG TAATCTACGGCTTATTGTTGA AATCTACGGCTTATTGTTGAA ATCTACGGCTTATTGTTGAAC TCTACGGCTTATTGTTGAACG CTACGGCTTATTGTTGAACGA


- DNA sequence L=37
- k-mer size k=21
- # of k-mers = L k + 1 = 17 k-mers
- n^k possible k-mers
- ~17+ billion unique k-mers

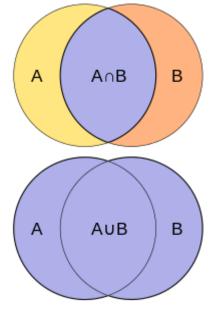
Hash Tables

Convert a string into a number in a reproducible way.

Numbers are faster to compare than text.

Open Access

FTWARE


Mash: fast genome and metagenome distance estimation using MinHash

Brian D. Ondov¹, Todd J. Treangen¹, Páll Melsted², Adam B. Mallonee¹, Nicholas H. Bergman¹, Sergey Koren³ and Adam M. Phillippy^{3*}

Jaccard Index (Similarity Coefficient)

Jaccard Index

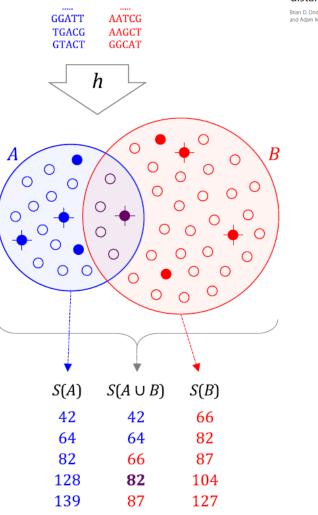
• Compute the ratio of the shared elements over all elements.

Mash

• Uses subsampling

 $J(A,B) = \frac{|A \cap B|}{|A \cup B|} \approx \frac{|S(A \cup B) \cap S(A) \cap S(B)|}{|S(A \cup B)|}$

SOFTWARE


Mash: fast genome and metagenome distance estimation using MinHash

Brian D. Ondov¹, Todd J. Treangen¹, Páll Melsted², Adam B. Mallonee¹, Nicholas H. Bergman¹, Sergey Koren³ and Adam M. Phillippy^{3*}

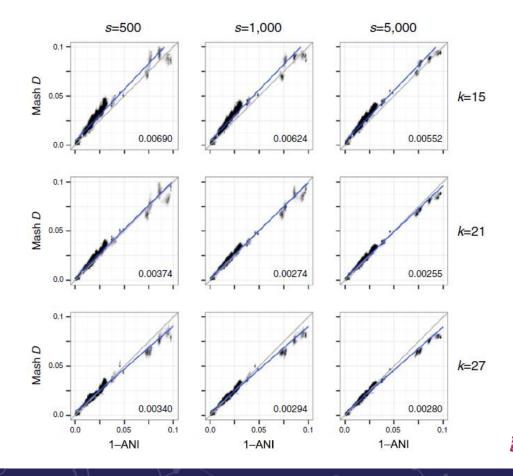
Mash (MinHash)

Mash will:

- 1. Create a hash sketch from k-mers of user defined size (15, 17, 19, 21, 23, ...)
- Grab the X smallest hash values, where X is user defined (usually 500-1,000)
- 3. Compare these subsets as an estimate of similarity/dissimilarity and produce a Mash distance.

Open Access

SOFTWARE


Mash: fast genome and metagenome distance estimation using MinHash

Brian D. Ondov¹, Todd J. Treangen¹, Páll Melsted², Adam B. Mallonee¹, Nicholas H. Bergman¹, Sergey Koren³ and Adam M. Phillippy^{3*}

Mash

The Mash distance correlates well with ANI (or correctly 1-ANI), especially at high levels of similarity.

Not so good for distantly related species.

Tableau Analysis of Mash

- 1. Mash output command line
- 2. Mash output Tableau
- 3. Escherichia spp. analysis

Why is all this important?

- These tools are becoming embedded in our workflows as NGS adoption continues.
- These tools will need to be validated, and a deeper understanding of how they work, along with parameter optimization, is needed.
- As NGS data increases, algorithms that use data reduction, subsampling, approximation, etc., will become more and more necessary in order to take advantage of the wealth of data available.

Questions?

